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Summary: 1,1’,2,2’-ferrocenetetramethanol (1) undergoes a remarkable acid-catalyzed 
tandem dehydration in aqueous solvents to give 1,1’:2,2’-bis(oxybismethylene)ferrocene (2). 

Cooperative phenomena are widely exploited by biological molecules for the purposes of 
binding and catalysis. 1 The essential features of cooperative binding have been incorporated into 
several synthetic hosts,z-9 wherein an initial binding event induces conformational changes which 
lead to enhanced association constants for the subsequent binding events. In the course of our efforts 
to construct cooperative ferrocene-dicoronands, we have discovered that 1,1’,2,2’-ferrocene- 
tetramethanol (1) undergoes a remarkable acid-catalyzed tandem dehydration in aqueous solvents to 
give 1,1’:2,2’-bis(oxybismethylene)-ferrocene (2) and not the homoannular isomer 3. The stability 
of 2-&e simplest conceivable ferrocene-dicoronand--derives in part from a cooperative relationship 
between the two ether bridges. 

1 2 3 
The first heteroannular cyclic ether of ferrocene was reported in 1960 by Rinehart and 

coworkers,10 who dehydrated l,l’-ferrocenedimethanol (4, Scheme I) with tosyl chloride in 
benzene to obtain 1 ,l’-(oxybismethylene)ferrocene (6). Several other groupsl l-15 have also studied 
the dehydration of 1,l ‘-bis( 1 -hydroxyethyl)ferrocene to produce the corresponding a,a’-dimethyl- 
l,l’-(oxybismethylene)ferrocene. Yamakawat6.17 has established that the latter dehydration 
proceeds stereospecifically via an SN~ mechanism and that the extraordinary stability of the 
ferrocenylcarbinyl cation 518 accounts for the facility and ste=ospecificity of this interconversion. 
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Compound 7, produced by directed dilithiation of l,l’-bis(methoxymethyl)ferrocene,lg was 
reduced to diol-diether 9 (Scheme II), and conversion of 9 to tetramethanol 1 was attempted under 
conditions which readily afford 4 from 6 or from l,l’-bis(methoxymethyl)ferrocene. However, a 
nonpolar, highly symmetric product was is0lated.m The essential structural ambiguity was whether 
the two ether linkages are heteroamurlar (as shown for 2) or homoannular as in structure 3. 
Though the homoannular linkages might be expected to be less stable owing to angle strain, a five- 
membered, homoannular, cyclic ether of ferrocene has been reported,21 and NMR does not provide 
any basis for distinguishing between the two possibilities. Our initial assignment of the product as 2 
rested on our interpretation of the electron impact mass spectrum, which exhibits a molecular ion 
which is also the base peak. In our experience this behavior is typical of heteroannularly linked 
ferrocenes, whereas ferrocenes which lack such a tether readily fragment by separation of one of the 
Cp rings. 

Definitive assignment of the structure emerged from single crystal x-ray analysis of the 
product (see Figure l), 22 which is structurally (but, as it turns out, not crystallographically) 
analogous to the carbocyclic analogues reported earlier by Hillman et al.23 Also in contrast to these 
carbocyclic analogs, the oxygens of 2 are not disordered in the crystal. The tilt angle between the 
Cp rings of 2 is about 16 “,22 which is greater than the 12” tilt found for 6.23 
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It is in fact possible to isolate 1 by first hydrolyzing 7 (aqueous HBF4) to give diol diester 10, 
and then reducing to the tetramethanol (LiAlH4, Scheme III). Tetramethanol 1 is extremely 
unstable in that exposure to miniscule amounts of acid (Si@, residual DC1 in CDCl3, glass surfaces) 
converts it to diether 2. Indeed, even in solvents composed largely or entirely of water, 1 
undergoes two dehydrations to afford 2 cleanly; we have been unable to hydrolyze 2 to 1. This 
behavior contrasts sharply with that of dimethanol 4, which is produced readily via hydrolysis of 
cyclic ether 6. The mechanism of dehydration of 1 likely involves stepwise formation of the two 
ether linkages, with the stereochemical sense of the first ring closure being random, leading to the 
meso and DL intermediates 11 and 12, respectively. Intermediates 11 and 12 can be prepared 



6119 

independently by reduction (LiAl&) of the separated diastereomers of 8 (Scheme II);u exposure of 
either 11 or 12 to aqueous acid leads to 2 quantitatively. Further dehydration of 12 requires 
opening of the ether linkage to give 1, followed by initial closure to 11. We believe that the ease of 
formation of 2 derives from preorganization of the two remaining alcohols in 11 so as to favor 
ether formation. This preorganization is manifested in the lack of free rotation of the Cp rings in 
11 and in the tilting of the Cp rings toward each other. 23 Thus, the sequential &hydrations appear 
to be cooperative. A necessary correlate of this hypothesis is that k$k_pk2/k_2 (Scheme IV). We 
are currently performing experiments which will test this prediction. 

Figure 1. Structure of 2 as determined by single crystal x-ray analysis.22 
scheme ILI 
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